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Abstract. The symmetry properties of outer product coupling coefficients for the symmetric 
group and of Clebsch-Gordan coefficients for the unitary group and of the corresponding 
isoscalar factors are discussed. A simple rule is given for determination of a phase factor 
of outer reduction symmetry of S,,  and U(  N ) .  The rule is provided with a relationship 
between the phase factor of a Young diagram with its subdiagrams. 

1. Introduction 

The symmetric and unitary group are two important groups which have been extensively 
used in describing the structure and properties of many-particle systems, in areas of 
theoretical physics and chemistry. The significance of the group SU(3) for the nuclear 
model is well known. In quantum chemistry, various approaches based on the unitary 
group and/or  symmetric group to the many-electron correlation problem (Paldus 1974, 
Shavitt 1977, 1978, Hinze 1981, Matsen and  Paunze 1986 and references therein) 
provide not only mathematically beautiful formalisms but also versatile, practical and 
powerful tools for handling many-electron systems. The approaches have been used 
in much of the methodology of quantum chemistry. These approaches are now 
developed to combine with other many-body theories, such as many-body perturbation 
theory, coupled cluster theory and propagator theory, in the hope of yielding more 
efficient and  compact formalisms with a view towards implementation. 

It is believed that further applications of these two groups to many-particle systems 
require better understanding of their mathematical structure. The construction of 
Clebsch-Gordan (CG) coefficients (or Wigner coefficients) for the relevant groups in 
an efficient way becomes a valuable topic. At present, much literature is concerned 
with the construction of CG coefficients for S, and/or  U ( N )  from different points of 
view. Among these approaches are: Racah’s infinitesimal operator (de Swart 1963, 
Haacke et a1 1976), pattern calculus (Biedenharn and Louck 1968, 1981), diagonalisa- 
tion of the representation matrix of certain operators such as csco (Bayman and Lande 
1966, Chen et a1 1985,1987), build-up procedure for isoscalar factors (Wybourne 1974, 
Butler and Wybourne 1976), vector coherent state theory (Le Blanc and Hecht 1987), 
and some new developments (Karassiov 1987). 

In  recent papers, the inner and outer product coupling coefficients for S, have 
been extensively discussed (Zhang and Li 1986, 1987, Li and Zhang 1987, 1989). Based 
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on a double coset technique, we obtained two recursion formulae which lead to a 
simple and efficient construction of the corresponding isoscalar factors. Furthermore, 
the computation of isoscalar factors (reduced Wigner coefficients) for U( N )  1 U( N - 1) 
is carried out from a viewpoint of outer product isoscalar factors for S,, by virtue of 
the duality between the outer product reduction of S, and the Kronecker product 
reduction of U ( N )  (Weyl 1946) and the duality of bases for the relevant groups. 

Unlike the inner product coupling coefficients (IPCC) for S,, the outer product 
coupling coefficients (OPCC) are rather new and suffer a lack of attention. However, 
the OPCC are useful in physics and quantum chemistry. For example, they appear 
naturally in a partitioning technique related to interaction theory of subsystems (Kaplan 
1974, Paldus er al 1987). Using OPCC, one can generate any k-column Gelfand-Tsetlin 
state from k single-column states (Paldus and Sarma 1985, Sarma and Paldus 1985), 
which is the basis of a recently developed Clifford algebra unitary group approach to 
the many-electron correlation problem. It is therefore highly desirable that the relevant 
OPCC can be expressed by compact and closed formulae. Recently, a closed formula 
has been derived for coupling of two single-column states to generate two-column 
Gelfand-Tsetlin states (Li and Paldus 1989). The nature of this derivation tells us that 
any attempted search for a suitable algebraic formula shall require a better understand- 
ing of the structure and symmetry properties of OPCC. In a recent paper (Zhang and 
Li 1987), the computation of outer product isoscalar factors leads to an interesting 
rule for a phase factor of symmetry, in which the phase factor of a Young diagram is 
related to that of its subdiagrams. It is the purpose of the present paper to give a 
detailed description of symmetry and a proof of the rule of phase factors, based on 
some recent developments. The notation used in this paper is the same as that used 
earlier (Zhang and Li 1987). 

2. Symmetry properties 

We shall denote an irrep of the symmetric and the unitary group by [ A ]  and ( A ) ,  
respectively. Consider groups S,, and S n 2 ,  the elements of which operate, respectively, 
on n, objects {1,2 ,... , n , } = w ;  and n, objects { n , + l ,  n 2 + 2 , . .  ., n , + n , = n } = w ; .  A 
standard Young-Yamanouchi basis for S,, and S,? is, respectively, I [ A ] r ' )  and l [ A ] r 2 ) .  
Replacing the index sets w ;  and w ;  by w '  = { i , ,  i , ,  . . . , in,} and w 2 =  { j , ,  j 2 , .  . . , j,J, 
respectively, from the standard bases for S,, and S,?, 

k = 1 , 2  

we obtain the bases for groups S , , ( w ' )  and S n 2 ( w 2 ) ,  the groups consisting of all 
permutations operating on n, and n, objects labelled by w '  and w 2 ,  respectively. All 
those outer product states, i.e. l [ A , ] r ' w ' ) l [ A 2 ] r 2 w 2 ) ,  form a reducible space for S, 
( n  = n, + n 2 )  and we can use OPCC to decompose the space to obtain a basis for S, : 

where [ A ]  is in the reduction of the outer product [ A , ]  x [ A , ]  described by the Littlewood 
rule. 

The standard basis I [ A ] r )  is adapted to the subgroup chain 

s, = s,-, =I. . ' = S I .  ( 3 )  
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Moreover, the subduction of an outer product state I[Al]r1~')1[A2]r2w2) from S, to 
S , - ,  results in an outer product state for the group S , - , .  Hence, by using the Racah 
(1965) factorisation lemma, any OPCC is a successive product of Io factors (outer 
product isoscalar factors or reduced OPCC): 

The calculation of Io factors has recently been described by Zhang and Li 
(1987) through a recursion formula which expresses I,,(S, 2 S,-,OS,) in terms of 
Z 0 ~ S , - ,  = Sn-20SI) .  

I t  is well known that an outer product reduction is independent of its order 

where 77 = *1 is a phase factor of symmetry with respect to a permutation of the first 
two columns and depends on the irrep labels [ A , ] ,  [A , ]  and [A] .  Generally speaking, 
the symmetric group S, is not a simple reducible group (except for some smaller n). 
It is therefore not always possible to separate the phase factor 77 into three pads, such 
that each one depends only on one irrep label. However, for a given reduction which 
is multiplicity free, it is possible to define a phase factor for each irrep. Stated differently, 
we shall require a phase factor which is dependent on three irreps only when the 
relevant reduction is not multiplicity free. Hence we can define 

(7)  

~ ( [ A I I ,  [A213 [ A I ) i  (8) 

[ A , l + [ A , l + [ A l  77 = B ( [ A l l ,  [A219 [ A I )  = (-1) 

for multiplicity-free cases, or more generally 
77 = ( - ~ ) [ A l l + [ A Z l + [ A l  

if multiplicity arises. Here, in (8), i is a multiplicity index. It shows that a phase 
factor which is dependent on three irreps can be defined by introducing a new phase 
factor to modify the original phase without multiplicity. Taking (7)  and (8) into 
account, Io factors have symmetry 

where i and j are multiplicity indices. 
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The phases of (7) and (9) can be completely determined by the group itself. On 
the other hand, when multiplicity appears, there is no unique solution to this problem. 
We cannot determine the phases within the group. Solutions are usually obtained 
based on an ad hoc procedure. Therefore we shall pay special attention to the phases 
in (7) and (9). 

The significance of I ,  factors is evident. Due to the duality between the bases for 
S, and U(N) and the fact that both the reductions of the outer product of S, and of 
the Kronecker product of U( N )  are determined by the Littlewood rule, it was shown 
(Chen 1984, Chen er a1 1987) that CG coefficients for U( N )  are related with OPCC for 
S, .  It follows that the isoscalar factors for U( N )  2 U( N - 1) ( I ,  factor for short) can 
be expressed in terms of I ,  factors (Zhang and Li 1987). From (37) of Zhang and Li 
(1987), it can easily be verified that the symmetry of I ,  factors for multiplicity-free 
cases is given by 

with the same phase factors ( -1)[^]  as used for I ,  factors when considered in terms 
of Young diagrams for irreps of U(N). Generally, we require another phase 0 given 
by (10). It is indicated that we can examine the phases either from the viewpoint of 
I ,  factors or  of I ,  factors. 

3. Phase factor 

The symmetry properties of inner product coupling coefficients or  IPCC for S, have 
been examined by Hamermesh (1962) and recently by Zhang and  Li (1987). The 
conclusions are: (i) when three irreps involved are different, one can arbitrarily choose 
the phase; ( i i )  when two of them are identical, we must distinguish two different spaces, 
namely the spaces of symmetric and  antisymmetric squares; (iii) when all three irreps 
are identical, there are three different possibilities for symmetry properties, namely 
symmetry [3], antisymmetry [I3] and mixed symmetry [21]. 

I ,  and I ,  factors of the outer reduction have similar symmetries. Equations (9)-( 11) 
show that the permutation of the first two columns only causes a change in the phase, 
the value of which can be chosen arbitrarily to be positive or  negative in most cases. 
However, unlike the IPCC, there are not the spaces of symmetric and antisymmetric 
squares for the outer product reduction. But a similar restriction of the phases appears 
when[A,]=[A,]in (9) ( o r ( A ) = ( p ) i n  (11)).  In fact, i f w e l e t ( A ) = ( p ) a n d ( A , ) = ( p , )  
in (1  l ) ,  we have 

It shall require 

(13) 
In order to better understand the symmetry properties, we first consider some simple 

examples for I ,  factors. For the reduction of [ 11 x [ 11 = [2] + [ 12], we have following 
symmetry of OPCC 

(-1)["'= ( - 1 ) [ L , , ] .  
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In terms of Io factors, we get 

Therefore 

(-1)[21= 1 (-p = -1. (15) 

(-l)['kl= 1 ( k  = 1 , 2 , 3 , .  . . )  (16) 

(17) 

Similar analysis leads to the following phase factors: 

( k  = 1 ,3 ,5 , .  . .) (-1)[1211 = -1 

(-1)[14'1 = 1 ( k = 1 , 3 , 5  ) . . .  ). (18) 

The above phase factors are provided with some built-up features. The phase factor 
of a Young diagram indicates a relation with its Young subdiagrams. This fact motivates 
us to search for such a relationship by which the phase of an  arbitrary irrep of group 
S ,  can be determined from the phase factors of its subgroup S,-l. For this purpose, 
it is found that a realisation of the U ( N )  basis in terms of the embedding U(2N)  2 

SO( M )  basis is beneficial. 
Exploiting the subgroup chain 

U(2x)  3 S O ( M )  2 U ( N )  3 U ( N  - 1) 2 . .  9 3 U ( l )  (19) 
where M = 2 N  or 2 N +  1, it was found (Sarma and Paldus 1985, Paldus and Sarma 
1985) that every basis state of any k-column irrep of U ( N )  can be realised as a 
multispinor basis state of S O ( M )  and the Lie algebra of S O ( M )  can be realised by 
using the embedding U(2") 3 S O ( M )  and only totally symmetric representations of 
U(2") are required to generate any U ( N )  irreducible basis. 

Based on such a realisation, it was further shown (Paldus et al 1987) that any 
two-column Gelfand-Tsetlin (GT) basis can be represented by coupling two single- 
column states. Let us give this formalism by writing 

where the GT bases are denoted by Weyl tableaux W,, W,, W {[( la)  Wl)l(lb) W2)}s  is 
a normalised symmetrised product of I( 1 ") W,) and I( 1 ') W2), namely 

{l(1a)wl)l(1b)w2)}~ = 2-"2~1(1a)Wl~/(lb)W2)+/(lb)W2)1(1a)Wl)~. (21) 
One can extend this formalism to more general k-column states by successively coupling 
k single-column states. 

Changing the sequence of coupling in (20) and  using the symmetry properties, we 
have 
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It follows that 

1 ( 2 3 )  
( - 1 ) [ I " I+ [  I 1+[2h 1 " - h I  ~ 

(-1)[2hl"-hl- - ( - ~ ) [ ' " l + [ l h l  

or 

(24) 

since 

({( 1 ") WI , (1 ') W J  s I(2' 1 "-') W )  = (I(  1 ') W,,  (1 ") Wi 1 ((2h 1 o - h )  W. ( 2 5 )  

Extending this result to general cases, the phase of any irrep of S, and U ( N )  is 
expressed as a product of the phases of its component k single-column irreps: 

(26) 
( - 1 )[A I = ( - 1 ) 1 " I + [  I I+[  1 ' I+.  , . 

where [ A ]  is schematically given by 

Let us examine the phase factor of a single-column irrep [ l"] from the viewpoint 
of the Io factors. We shall adopt the convention ( -  l)"] = 1 and use one of the orthogonal 
relations (Zhang and Li 1987) of Io factors which is 

Consider the reduction 

[l"] x [ l ]  = [2 +[ lm+l] .  

Using (28) we get 



Symmetry of outer reduction 2305 

The absolute values on the right- and left-hand sides of (31) will cancel. In accordance 
with the extended Condon-Shortley convention (Zhang and Li 1987), the Io factors 
on the LHS and the second I ,  factor on the RHS of (31) are positive. Thus, (31) requires 

Using (23) in Zhang and Li (1987), we have 

Therefore 

[1"-'] 1 [2 1m-21) 

[1"-'] I [2 1 7  

[ 1 7  [1"-'] * (33) 

. (34) [ 1 9  [1"-'] 

Successively using (34), we have 

Taking (35) into account, we get from (32) 
[2  1"'-']+[1""'] - (-1) - (-1)". 

Using (24), we obtain 
( - 1 ) [ I ""'I = ( - 1 ) [ I  ' I '  I +  m - [ I " ' I+( m + I ) + I  

- (-1) (37) 

We can also rewrite (37) as 

(38) ( - 1 )[I" ' ]  = ( - 1 ) 1 +2+.  . . + m + m  - - (-1)m(m-l)/2 

Using (26) and (38), the phase factors of any irrep are now determined. 
In concluding the discussion, we can easily express the phase factor by writing 

(39) (-1)[A+I*r,,+'l = (-1)[Al+r,,+,-l 

The rule given by Zhang and Li (1987), which relates the phase factor of the Young 
diagram [ A  + 1, r , , , ]  with that of diagram [ A ] ,  if [ A  + 1, r,,,,] is obtained by adding 
one box to the (rfl+l)th row of [ A ] .  In  terms of the shift notation used for U(N) ,  it is 

(40) (-1){[Al+[a(T)II = [ A l + r + l  (-1) 

4. Discussion 

In principle, only the overall phase factor 7 can be uniquely determined by the group 
itself, while the choice of (-1)[^' is not unique. The above rule can be considered as 
one possible solution among all possibilities. However, this rule is clearly reasonable 
due to its build-up structure. Based on Cartan's works, it was known (Biedenharn 
and Louck 1968) that there are two types of building blocks from which any irrep can 
be constructed. They are the fundamental irrep [ 11 and the elementary irreps [ lk]. 
The present rule ((26) and (39) respectively) reveals a distinct composite structure of 
the phase factors from these two kinds of building blocks. 
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With regard to phase factors described by other authors, it is found that in a recent 
book (Chen et al 1987) the phase factors (their B~ factors) are not separated into three 
parts, and phases which depends on three irreps are always required, even though 
without multiplicity. Moreover, there is not a general rule for the determination of 
the phases. Each of them must be examined individually and hence only the phases 
for groups S I - &  are known. Even so, if one expresses their factors by 

and uses the present rule, one can easily observe that table 5 of Chen et al (1987) 
satisfies the rule. It is also found that Hecht et al (1987) introduced (without proof) 
a phase convention +( [A] )N,  which is similar but not equal to (-l)[A1. However, the 
overall phase is clearly identical, i.e. 

(42) ( -  1 ) @ ( [ A l l )  2. + @ ( [ A > ] )  - b ( [ A I )  \ = ( -  1 ) [ A  I I + [ A > I + [ A I  

when considered in terms of Young diagrams. Different from 4 ( [ A ] ) N ,  the present 
phases are N independent. This is obviously a beneficial feature, since N can be fairly 
large in molecular electronic structure calculations (where N is the size of the basis 
set). These comparisons and relationships reveal the validity of the present phase 
factors. 

Applications of the representation theory rely heavily on our ability to construct 
various kinds of coupling coefficients. However, the determination of suitable phases 
of CG coefficients is sometimes more difficult than that of their absolute values. In a 
recent paper (Gould 1986), for example, only the absolute values of CG coefficients 
for U ( N )  are discussed and the author seems unable to fix the phases. The present 
rule of phases provides new insight into the structure of coupling coefficients for both 
S ,  and U( N )  and will be beneficial for an efficient construction of coupling coefficients 
and their applications. 

Finally, we emphasise that the representation theory of S ,  and U(N) for large n 
and N seems to be more useful in many-electron systems than in other areas of 
theoretical physics (except, of course, some smaller-N cases as SU(3), etc). The 
applications of the unitary group approach ( UGA)  to the many-electron correlation 
problem in the past decade have proven its versatility and efficiency. Recently, it has 
been possible to obtain highly accurate calculations of electronic structure for molecules 
in such a way that the exact molecular wavefunctions are expressed as linear combina- 
tions of several millions of Gelfand states (Saxe et a1 1982). It is indeed unbelievable 
to carry out such large-scale computations without UGA. It is presently realised that 
the UGA is, in fact, an irreducible tensor method for U ( N )  and the so-called segment 
values in the UGA are isoscalar factors. Detailed discussion of this topic is beyond the 
scope of the present paper. We intend to publish systematically a series of papers in 
the near future in which we will discuss how one can efficiently construct CG coefficients 
for U ( N )  purely based on a symmetric group technique and how the Racah-Wigner 
tensor operator calculus for U ( N )  for large N can be carried out for many-electron 
problems. In those developments, the rule of phases will play a non-trivial role. 
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